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| Advancing land surface modeling through data-model integration
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Challenges:

* High computational costs;
* Large parameter uncertainty;

Our study:

* Efficient emulation;
* Generative Al for UQ.
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Challenges:

* Generalizing across space and time;
* Explainability, physical consistency;
e Reliability under changing conditions;

Our study:

e Advanced ML integrating diverse data;
* Interpretable Al for explainability;
* UQ to improve predictive reliability.
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Challenges:

* Heterogeneous, unlabeled data;
* Diverse modeling application needs;

Our study:

* Billion-size Al foundation model
trained on CMIP6 climate data;

* Adapted for weather forecasting,
climate downscaling, and land model
acceleration.



| Physics-based land surface modeling needs model calibration |

* Physics-based land surface modeling (LSM) requires
model calibration and ensemble simulations for UQ.

Emulation Generative Al
* High computational cost * Land surface heterogeneity
of LSM simulations needs requires efficient UQ for
i ! improved efficiency. rapid, site-specific model
quantification | i 5 calibration at large scales.
| | e We build a fast LSM
| emulator from ensemble * We developed a diffusion
! | runs and evaluate it for model to quickly generate
ety : L i parameter estimation parameter posterior
propagation | P ! and uncertainty samples, enabling fast,
""""""" quantification (UQ) to large-scale model
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| Emulation to reduce computational costs of LSM |
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Dimension reduction on output layer reduces NN parameters from 10 to 10
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s Dimension reduction enabled an accurate NN-based emulator with fewer required samples.

* Lu, D,, and Ricciuto, D., GMD, 2019. Lu, D., et. al., JAMES, 2018.



l Generative Al method (DBUQ) for efficient parameter calibration ]

* QObijective: draws samples to approximate posterior
distribution of parameter X given observed vy,

p(X|Y =y) x p(Y = y|X)p(X)

* Qurdiffusion-based UQ (DBUQ) formulates a generative
model F to draw the target samples,

XY = F(Y, Z;0)

+** Use a NN to learn the relationship

* A neural network (NN) is trained to estimate F; between [Y, Z] and X|Y:
e After training, the NN evaluate Z to quickly generate e X|Yis the parameter of interest;
desired parameter posterior samples  Yisthe observation variable;
XY atY =y e Zis the standard Gaussian variable.

s The generation of target samples of X|Y is computationally and memory efficient;

s For any given observational data, the NN generates corresponding parameter posterior samples
for UQ without the need for re-training the network.



| Apply DBUQ to improve LSM parameter calibration |

Problem: Use DBUQ to estimate 8 land surface model parameters;

Parameter Parameter
Observation: Annual averaged latent heat flux (LH) for 5 years at the name range
Missouri Ozark AmeriFlux site in 2006-2010; rootb_par [0.5, 4]
slatop [0.01, 0.05]
Prior sample: 1000 samples from LSM simulation Dpior = {(zj,4;)} /1 finr [0.1,0.4]
frootcn [25, 60]
Two case studies: froot_leaf [0.3,1.5]
. e 4 br_mr [1.5e-6, 4e-6]
o Synthetic case for method verification crit_dayl [35000, 45000]
o Real observations application crit_onset_gdd [600, 1000]

Compare DBUQ with MCMC for performance evaluation

DBUQ

Input: 1000 LSM samples  Dprier = {(z;. )}/

Output: a trained generator which can be quickly
evaluated to generate target samples for any given
observations;

Computing time: < 10 min for solving both cases

Particularly suitable for site-specific LSM calibration
at a global scale due to its computational efficiency
and amortized inference.

Surrogate + MCMC

Input: 1000 LSM samples  Derior = {(z.;)}/=

Procedure: build an emulator on the LSM samples,
and then perform MCMC simulations on the
emulator;

Output: a set of posterior samples; For a different
observation, we need to re-run MCMC;

Computing time: ~ 5 hours for one case to generate
the same number of posterior samples as DBUQ.




| DBUQ accurately and efficiently estimated model parameters |
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s DBUQ shows high accuracy in approximating the parameter posterior distributions.

« DBUQ demonstrates an accurate model calibration, as the prediction samples simulated from the
parameter posterior samples are closely around the “true” observation.



| DBUQ accurately and efficiently calibrated the land model |

Real observation case 65 -
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« DBUQ again shows high accuracy in approximating parameter posterior distributions.
¢ It showed accurate calibration, with prediction samples tightly enclosing the observations.

% DBUQ achieves comparable accuracy with MCMC with significantly less computational time.
« DBUQ: 10 mins for all the three case studies;
« MCMC: 5 hours for one case study;

httQS ://g ithub.co m/Q atrickfan /G_enA|4[£ * Luet.al, JGR--Machine Learning and Computation, 2024.



https://github.com/patrickfan/GenAI4UQ

e

Process-based Model \

Model calibration and UQ are critical to
improve prediction.

Advanced surrogate modeling and generative
Al for efficient model calibration and UQ.

/
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Data-driven Model

Long Short-Term Memory (LSTM)
LSTM network learns system @
dynamics from observations of
environmental drivers and ‘ (¢
carbon/water fluxes to predict - — - .
future carbon/water fluxes { ;
&)

Input: Observation of

environmental drivers :I'errestrlal Ecosystem

LSTM simulates a
mapping for the inputs
over time to an output

“ to consider the memory

effect of drivers.

Output: Observation of
carbon/water flux

ML model has challenges in trustworthiness.

* How can we ensure that ML solutions
generalize across space and time?

* How do we verify that models are making
good predictions for the right reasons?

 How can we guarantee prediction reliability
under changing environmental conditions?

-
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Advanced, expla

nable, reliable ML for land surface modeling

Advanced ML

Explainable ML

Reliable ML

Meteorological
Time series Static Attributes

Integrate diverse data from satellite
and sensor networks

Develop advanced model
architectures
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NSE value: = 1.0 means perfect fit; > 0.65 suggests good prediction

* Leverage diverse data and

advanced ML models to improve
accuracy and generalizability.

Permutation analysis: SHAP
Gradient-based method: IG
Interpretable LSTM network
Attention maps of transformer model

Interpretable LSTM

Variable-wise
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+» Validate model decisions

ensuring physical consistency;
identify key drivers for prediction.

.0

Bayesian neural networks
Gaussian processes
Ensemble-based methods
Prediction interval methods
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Quantify prediction uncertainty
to evaluate & ensure reliability
under changing conditions.
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| Transformer model to improve long-term sireamflow prediction |

Our Temporal Sequence Transformer (TST) model

* Problem: Predict daily streamflow 30 days ahead;

e Data: Past weather observation (Daymet), future | i
weather forecast (ECMWEF), and past streamflow; w BRI [ ”‘i"‘“
L Inr Coons Temporal Modality Fusion Modale N
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(. 0.70 =
30°(  [DMississippi River Basin ‘ 30° 00 Exogencus Drivers - Endogung urns
W Upper Mississippi River Basin 0.60
[[JSusquehanna River Basin
[JDelware River Basin 0.55 . ’
| eI Lot TR AL e * Two encoders process past and future drivers’ data,
120° T10° 100° 5° 807 70° and one decode handles past streamflow data;
e Across-temporal fusion module denoises and
% TST model achieved high accuracy and integrates encoder data, while the decoder uses
reliability in 30-day streamflow forecasts. cross-attention to combine this with past flow data

for future predictions.

* Tayal, Renganathan, and Lu, ICML, 2024. Ambika, Tayal, and Lu, GRL, under review.



| Transformer model achieved higher accuracy in long-term prediction |

Standard LSTM model
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| Advanced ML models to improve spatial generalizability |
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ML models integrating diverse data enhanced generalization

L)

1.0

Problem: Predict streamflow across the CONUS; — LSTM
. 1 -2 2 -201 0og4 —— Geo_LSTM
Data: 35 years of CAMELS dataset of 531 basins 080-2007 | 2008-2014 RS_LSTM
1. . . . 0| — Geo_RS_LSTM
and Sentinel-2 satellite images; b35'4 etz "
Model: 4 ML models with diverse inputs; a>1ns = 04
Evaluate: Model performance in spatiotemporal b17'7 Evaluation 021
out-of-sample prediction using the NSE metric. asins ~ | . | |
Perform 3-fold cross-validation. o e the o . o °

NSEs in the out-of-sample dataset

_‘%Mr% i\ﬁi P s L"%Geo RS_LSTM * Geo_RS_LSTM model performs the best.
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: e — shown in
e, . ()60 0.65 0.85 different symbol 0
NSE value T T T T T T T T
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Year 2014

The ML model, integrating diverse data from gauged basins and satellite images, excels in
predicting streamflow at ‘ungauged’ basins under ‘future’ meteorological conditions.

* Tayal, Renganathan, and Lu, ERL, 2024. 14



| Explainable ML improved our predictive understanding |

‘ SHAP (SHapley Additive exPlanations) \

N ———

Hidden state as oy & " g g

inputs of PI3NN \/

Explains the contributions of hydrological drivers to

response predictions;

Model agnostic, flexible, and widely used;

Computationally expensive (0(2")) and unable to
separate individual and interactive contributions.

[ ED-LSTM Networks for Multi-step Forecasting ]
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Feature Vector

Decoder [LsTMcell | -~[LsTMcell | [LsTMcell || LSTMcall |

!

7-day ahead [ ] - - - ]

‘ IG (Integrated Gradients) \

Calculates input importance by integrating output
gradients w.r.t. input along a baseline path;

Computationally efficient; captures both individual
and interactive input contributions;

Improves understanding
impacts.

= nflow  mem Temperature  BEE Precipitation

of multi-driver mutual

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Lanier

s SHAP and IG methods identified key drivers of reservoir inflow forecasts, improving
understanding, validating predictions, and supporting hydropower operations.

* Fan, Zhang, Liu, Yang, and Lu, Frontiers in Water, 2023.  Fan, Liu, and Lu, JH, 2023.

Fan, Liu, Lu, Gangrade, and Kao, EMS, 2023.
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Interpretable ML can guide process-based LSM development

‘ Transformer-based model Interpretable LSTM (ILSTM)

e Visualize Transformer model’s learning process to * iLSTM explains variable and temporal importance
improve prediction understanding. through its advanced model architecture.
Input Series Self-Attention Map Interpretable LSTM
“ ‘ 2 & e Variable-wise
t—2 t—1 t temporal attention . .
Mf M‘ : s | veie | * Uses variable-wise
| ‘ \ e ; ] I V ( X J | I ]w—- - O | eeren hidden matrix;
»\J 'l\“ )wa‘ : T —— * Adds temporal and
g : .. @30 (@©g ([©g variable attention;
= Xt—2 Xt—1 Xt
e 10 @ ®

| . - R2(iLSTM) = 0.85
5 R2(LSTM) = 0.75

nce(f) w
o o

NEE (gCm~2d~1)

Variable importal
o o o © o

- =10 Jan "Feb 'Mar Apr May Jun Jul 'Aug Sep Oct Nov Dec

Year 2012
Cross-Attention Map (H1) Cross-Attention Map (H2)

Td Ra VPD P SW t-40 -30 3
Environmental variables Temporal importance(a)

* iLSTM achieved more accurate prediction;

» Self-attention identifies temporal pattern of each driver; . . . . .
P P ’ * iLSTM revealed new variable relationships and their

* Cross-attention captures relationships among drivers. temporal importance.

*» Advanced interpretable ML models enhanced prediction accuracy, revealed learning
processes, and provided insights to inform process-based model development.

* Lu, Ricciuto, and Liu, /ICLR, 2022. Tayal, Renganathan, and Lu, ICML, 2024.
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| ML model needs UQ for trustworthy prediction under climate change |

e ML model typically perform well under conditions similar to those they have been trained
on but struggle with new, unseen conditions.

e |dentifying the reliability of ML predictions is crucial for their effective use.

 UQ helps address the challenge of assessing ML model reliability in climate projection.

Annual average discharge (mol/d)
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Use LSTM model to predict streamflow in East River, CO, from met. data.

Train on 20 years of data (blue dots in cool years); and evaluate on
subsequent 19 years (red dots in warm years)

LSTM performance deteriorates when extrapolating the warmer years.

24 —e— Training data

: W \/)\'AVM

A
N
\4

—e— Test data

—— NSE of all the training years —— NSE of all the testing years

|||||||||||
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“100 1 2
Annual average Tmean (C)

2

T —

3 4

Train: 1981-1999 Test: 2000-2019

* Topp, S., Barclay, J., Diaz, J., Sun, A,, Jia, X., Lu, D., Sadler, J., and Appling A., WRR, 2022.

17



| State-of-the-art UQ methods have limitations for scientific ML

Bayesian Neural Networks

Deep Ensembles

Prediction Interval (PI)

* Pros:

o Full distribution to quantify
predictive uncertainty;

e Cons:

o Sensitive to the choice of
prior distribution;

o Overconfident results;
o Slow to train;
o Difficult to scale.

.V:“v".bﬁ %
csao‘
(IR

BRLET

SR %NS
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L £
. O,

Pros:

o Simple to implement;
o Easy to scale;

Cons:

o Gaussian assumption;

o Costin computing and
memory increases linearly
with #NN in the ensemble.

Hidden layer

Prediction
Interval

Target

* Pros:

©)

©)

Understandable Uncertainty;
No distributional assumption;

e Cons:

©)

©)

No point estimates;

Unstable training and
unreliable performance;

Overconfident on out-of-
distribution (OOD) samples.
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| Our UQ method, PI3NN, for frustworthy and reliable ML prediction |

* We developed a prediction interval method from three NNs to quantify prediction uncertainty.

Step 1: Train NN £, (x) to Step 2: Train NN ug(x) to learn Step 3: Train NN vg(x) to learn
estimate y upper bound of the interval lower bound of the interval

Training data: Deraim = X, Y31 Dupper = {(x0, i — fixD)1yi = fi(x)}  Drower = 1(xs, fw(x:) — ¥ lyi < fulxi)}

Step 4: For a given confidence level, calculate the Pl [L(x), U(x)] via root-finding to determine a and

L(x) = fy(x) — Brg(x) U(x) = fy(x) + aug(x)

*» PI3NN produces accurate and reliable uncertainty bounds that precisely enclose a
specified portion of data with a narrow interval width.

s Liu, Zhang, Lu, and Zhang, ICLR, 2022.



| UQ ensures reliable streamflow prediction under changing conditions |

Our UQ method produces prediction
and its uncertainty using three NNs.

| Step 3: Train two dense networks
| to produce uncertainty bound

I [¥ie¥, ¥"] of the prediction

I tow

VYV =y =Bl Y =y +aug
I where a and g are calculated in
| Step 4 by root-finding method. [ Dense layer ]

[ Dense layer ]

Step 2: Extract values of h,
: Step 1: Train one LSTM network to predict current
| streamflow ¥: based on previous t days of
| meteorological data x;, X, ... X;

East Rlver Watershed CO
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Rock creek

* Input: precip, max and min air T

* Qutput: daily streamflow
*  Model: LSTM network

* UQ: calculate 90% prediction interval

* In Quigley where test and training

conditions are similar, LSTM accurately

predicts the streamflow.

Our UQ method accurately quantifies
prediction uncertainty consistent with

the confidence level.

* In Rock Creek, LSTM cannot
predict the test data well due to
data shift and new conditions.

* Our UQ method detects this shift
by producing a wider uncertainty
consistent with larger errors.

¢ Our error-consistent UQ method prevents overconfidence and

ensures reliable predictions under changing conditions.

* Luetal., JHM, 2022;

Liu, Lu, Painter, Griffiths, and Pierce, Frontiers in Water, 2023.
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| From physics-based to data-driven, now to Al foundation models

./ _ Process-based Model _\\.
Data Al Foundation Applications
AT Model
, ltnage Weather, climate
k¢ \%g prediction
LAY S
Spatiotemporal :
* Model calibration and UQ are critical to Cllmate
improve prediction. . . - . .
* Advanced surrogate modeling and generative “ Traln lng Ad aptat|°n prOJeCtlon
'\ Al for efficient model calibration and UQ. /' — —
- ~ ' -
Time series .Cllmat'e
2o fuese. simulation
Data-driven Model JER VR . downscaling

W VN

- Database E3SM simulation

acceleration

» Trustworthy prediction requires generalizable,
explainable, and reliable ML models.

* Advanced ML integrating diverse data to
improve generalizability;

* Explainable Al to ensure physical consistency;

*Utosupport ity under chaneing “ An Al foundation model is a large-scale neural network trained on
| extensive, diverse datasets and adaptable to a variety of modeling tasks.
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| Al foundation model can advance Earth system modeling |
| Heterogeneous Data | | Scalable Model | | Various Applications |

* Observations from lab, * Vision Transformer model * Earth system is a coupled system.
field, and satellite * Integrate heterogenous data * Its simulation advances various
* Model simulation data e Scale with data size and resolution scientific applications and

impacts multiple sectors.

 Foundation models can save
effort, cost, and energy.

e Data have multiple types,
scales, and resolutions.

* These heterogeneous data
cannot be fully integrated
by numerical models and
task-specific ML models.

Spatiotemporal

Foundation model:

—_— * |Integrate rich, multimodal data
“ : * Reduce reliance on labeled data
* Improve accuracy, efficiency, and generalization
* Ensure high versatility

Time series & — N\ Database

WY
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| ORBIT: our Al foundation model for Earth system modeling |

Pre-train on CMIP6 Develop large VIT models to enable effective learning
simulation dataset of Earth systems from extensive data
¢ SimU|at|On data from 10 ST T iy Variable Variable Transformer ?WW
T e : Tokenization % Training Block NEIEREE = N e ORBIT has four
CMIP6 models; e S b :
e niia| et 2 S ] = model sizes
* Each model provides 65 to Humidity 3 |oool B with 115M, 1B,
100 years of data at 6h A et J =%E g [ 10B, and 113B
interval; [ S & HEE parameters.
: : : “: | O\EO i3 e Itisthe |
* Consider 91 variables with = Oomg| @ 3| | tist O‘I? Ia]:gest
spatial-res of 128*256; 1 (I Al model for
24 3 E Earth system.
I

* 1.2 million data point and Temperature
223.6 billion tokens.

ESGF&

Earth System Grid Federation

Larger models are more effective in Earth system modeling

 As model size increases, the required

100,000
V" £ 50000 training samples decreases in Earth system
Coupled Model Intercomparison Project 5 Bﬂ,ﬂﬂ'ﬂ' . . .
5 40,000 modeling fine-tuning tasks;
Metrics Package E . . . . . o
2 m’mg l . * This data efficiency can lead to significant
* Use ESGF to access data and 1151 Mo s 108 cost and time savings in various Earth
. oael size
PMP to select quality data. system modeling applications.
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| ORBIT achieved strong scaling efficiency on Frontier supercomputer |

Tensor_i ** We develop a novel hybrid model-data-sequence
= | |  paratiel parallelism that merges
Tensor- * Tensor
pereie * Pipeline
| * Data
| « Sequence
I s i oo e R oo orue Jl:rr':ﬁ;li parallelism orthogonally to accelerate ORBIT training.
Node I Node 8 I
: - Tensor-: : - Tzr:asﬁ;: ' 91 Channel Variab.lefs . |
- e P e e =mbii ~biin 5 ORBIT achieves 1.6
_ _ _Pipdlie Pipsine ____| | _vodioe Figeive | e R, exaflop sustained

uence-Parallel Sequence-Parallel L
Seq ence-raratie a T: 1.E E:61% T: 1.E-02
E- 570, T:8.E-03

computing throughput
O on 6,144 Frontier nodes
(49,152 GPUs), with
oo T I T o Yek e StrONg scaling efficiency
E: 98% TSER~_ sl between 44% to 85% for

E: 52% T: 4.E-05
1.E-05

HE . o s PP Ese model sizes of 100M,
. M IC rOSOft AM D n s wall fiime e sbaevidion data polat (fee EX90% T o 1B, 1OB, and 113B.

Collaborating with

LEO3T 003 . T T 2.E-03
E:100% T: 1.E-03 E: 89% T. 9.E-04
E: 98% T- 6.E-04 = E: 84% T:5.E-04

* Microsoft DeepSpeed4Science Team

 AMD Team on Frontier platforms for Al

Walltime per Observation Data Point (sec)

E: strong scaling efficiency

%O AK RIDGE LEADERSHIP | E-06 Biso%
COM PUT | NG 512 1,024 2,048 4,096 8,192 16,384 32,768 49,152
National Laboratory | FACILITY Nuniber of GPUs
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ORBIT produced fast and accurate weather forecasts

Finetune ORBIT using ERAS data for weather forecast

Variable 2m_temperature, at time: 2017-01-04 02:00, lead time: 72 hrs

Predicted 2m_temperature

Geopotential at 500 hPa (z500) Temperature at 850 hPa (t850) 120°W  60°W 0° 60°E 120°E 180°
1.0 1.0 : ,
0.9 60°N 60’ -, 9
5 0.8 O 30°N 30° ]
o V. 0 0o 3
$ 508 . 4 R
-202
0.6 0.7 30°S 30° g
-40 £
0.6 60°S 60° IS
1 14 30 1 14 30 e o ,
Lead Time (days) Lead Time (days) e B = = e s 0°
Temperature at 2m (t2m) Zonal wind at 10 meters (ul0)
1.00 1.0 Ground Truth 2m_temperature
120°W  60°W 0° 60°E 120°E 180°
0.95 0.8 T . ‘
0 0 0N ™ . B2 o
2 0.90 20.6 . 4 %
< < 30°N ¢ of 2
04 o o E
0.85 0 0 0l
0.80 0.2 30°S 30° E,
' 1 14 30 1 14 30 . Jr-20 g
Lead Time (days) Lead Time (days) 00”5 o0 N
B ORBIT mmm ClimaX (Al model) B FourCastNet (ML model) B IFS (numerical model) = = =
120°W  60°W 0° 60°E 120°E 180°
‘ - - - L] L] Ll Ll
*» ORBIT achieves competitive performance in weather Model Size 115 million
forecasting, matching or surpassing state-of-the-art GPUs 1 GPU

numerical, machine learning, and foundation models.

Forecast Time 0.04 sec
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| Fine-tuned ORBIT for weather/climate downscaling |

* Finetune ORBIT using pairs of low-resolution and high-resolution data for downscaling

Input: low-res data able | R High-res data
Lol ] E Aggregatlon Prediction: 2m_temperature (K)
¥ 8 | —"—
Input: 2m_temperature (K) 'E . _]r_ l_]
300 g I §
clEg [N
- HEL &y
22| ! L] 22 g5l |=
2.5 > 5& 21, g
£5 1 5P S
“EhOEg) & I |3
Q o
= Omg| ¢ 3| |4
3|
<
25 38
IH I — =
________________ 1
* We adapted ORBIT for weather downscaling by
climate model hydrodynamic human-related
simulation modellng modellng

replacing its embedding layers and prediction
heads, while retaining its attention layers and
variable aggregation module.

. Downscaling S, Impact modellng

B =" ?@ﬂu

Model outputs inform decisions
and feedback to sub-systems
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| ORBIT accurately generated high-res precipitation data |
Model size RMSE RMSE RMSE RMSE
01>68% 62>95% 03>99.7% >99.99%

117M 0.974 0.151 0.172 0.355 0.465 0.6439 0.924
28km ERAS data 7km Daymet observation Downscaled 7km
® z oy Tl = » -
: - S . T
45°N oy o T u.é,k‘-«e - ‘x_: N
| %=1 kel A .
40°N S TR . wﬂ’" 4
35°N y | o ~\
30°N \\ _ \ 2 g \
25°N \ e @) s z 3,
120°W 110°W 100°W 90°W 80°W 70°W 120°W 110°wW 100°W 90°W 80°W 70°W 120°W 110°W 100°W 90°W 80°W 70°W
: T y T R precipitation on Jan. 15t, 2020
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
loge(mm/day + 1)

28km Reso. 2020-07-01T00:00:00 7km Pred. 2020-07-01T00:00:00

e

e —

 ORBIT demonstrated very accurate
results in generating high-resolution
precipitation from low-resolution data,
even in capturing the extreme values.
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| Fine-tune ORBIT to accelerate land model simulation |

A 3 ,‘bg Current limitation:
st * We developed high-res, km-scale DOE’s land surface model (ELM) but it is
' computationally expensive, mainly due to biogeochemical (BGC) spin-up process.

Goal:
* Aim to build a fast emulator of ELM to accelerate simulation;

 first to accelerate BGC spin-up by leveraging ORBIT foundation.
Humidity (kg/kg) X )
0.018 Y 5
f ' Enbedding Twin Il,‘g:::l;i':::l;
T - - | Attention P
0 ' -~ ,«’L,A-N,".f'r'; My —
\:\I X\ 4 ,«’L,"-mf.f"r""-":‘,«-‘ AW Nl T —4
Nl . ‘ . TL r—.(gf C% o ] -
(o] 1,000 2,000 3,000 4,000 5,000 km = 7 &0
‘“T.m.ij o }..,| A T — | e, Dy pEoOoE o
b=t — e stoms
fem oSt -
* Multimodal data including S, T )
time-series, static variables, (Snrsf;‘:*:‘::::;“Aux) _— . o _ew [CCCEEED
. . . 69 — A I I
and spatial varying variables. | ] o -  deateronte
. \_‘_‘_[_[_I_I FC den(tlI:tiemc
* Use different encoder to !_l—!_l_l_l_lu—u;u_l : — o
extract information from dendsteme e ase SIS @
these multimodal data. % T N — e
- 5 . 819
e <o 1ORBIT/VIT
(3, 18,_2) NN
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| ORBIT effectively emulated ELM outputs with high fidelity |

* Verification (Our model produces the results right):

GPP - Al_spinup(100 years) Max: 387.04231
ML outputs closely match ELM simulations across 380 variables, with "
R2 >0.97; .
e Validation (Our model produces the right results): 5,
* ML model produces accurate initial conditions that lead to
equilibrium, with NEE approaching zero globally. "
e Large errors occur in tropical regions, likely due to missing processes L L T L U

Max: 387.04231

and variables not yet included in the ML model.

NEE - Difference (Al_spinup(100 years) - normal_spinup) Majg 4,000002 2 0.
75 1 2 E 1507S
50 J 50 100
-1 75 50
25 1 0 50 100 B 200 250 300 350 Min: -OAOOOOOO
3 %
g 0 . . o %
3 : : )
i Acknowledgement:
o = « ORNL team: Wang, D., Shi, X., Ricciuto, D., Thornton, P,,
and Yang, X.
=751 -2 « North Texas University
0 50 100 150 200 250 300 350 Min: -0.000001

Longitude



| Al foundation model has potential to transform Earth system modeling |

Fine-tuning forecasts: ORBIT brings long-range
weather prediction within reach

Global Regional Local

oo . .
Weather, S ;% ‘Q Earth
Climate . \( :g‘.’_\ . System
Prediction [ o \ - Simulation November 13, 2024

D
s Researchers at Oak Ridge National Laboratory used the Frontier

supercomputer to train the world’s largest Al model for weather
prediction, paving the way for hyperlocal, ultra-accurate forecasts. This
achievement earned them a finalist nomination for the prestigious Gordon
Bell Prize for Climate Modeling.

Energy Exascale Earth
System Model (E3SM)

Gordon Bell Prize for Climate Modeling Finalist

EIOIIIE  moceing for water and Top Supercomputing Achievement Award
o —— community resilience

. Oak Ridge National Laboratory receives honors
in 2024 HPCwire Editors’ Choice award

% ORBIT has potential to advance
Earth system modeling by
leveraging diverse datasets and
its well-trained foundation.

November 19, 2024

ORNL has been recognized in the 21st edition of the HPCwire Readers’
and Editors’ Choice Awards, presented at the 2024 International
Conference for High Performance Computing, Networking, Storage and
Analysis in Atlanta, Georgia.




| Al foundation model for natural hazard assessment and response |

DOWNSTREAM TASKS

BN

MULTIMODAL INPUTS "g}gﬁ

L Streamflow

Al Foundation Model s, prediction
. for Natural Hazard o
Response £ =
&z Flood
. delineation
A ~
| Landslide
€ ‘ delineation
,, ~ - WCEE | | Building
1 Tiaie g X C AN X s footprint
' ! L s R e . extraction
I:I g 3 S 22 - Geospatial Prototypes P . Yo ¥
C?)'o = A l e < £ e Binding of modalities | ]
_ T _ pririd A X i e Contextual enrichment f / Point-cloud
Vectors (g ra phS) of joint embeddings ‘ ‘ Seg mentation

,
Fi
% |
iz

* The model integrates multimodal data to enhance disaster impact assessment and
Inform response strategies across multiple sectors.

« EarthBind project, Pl: Dalton Lunga 31



| Al model for probabilistic seasonal hydropower forecasts |

SHIFT: Seasonal Hydropower Forecasting Tool

/ Integrated Diverse Data

) ’ Ensemble forecasts of
g hydrometeorological

= conditions

Seasonal
Hydropower Outlook

Al/ML model

Climate indices on ENSO, etc.
Geospatial datasets on slope,

Reservoir
elevation, soil property, etc. inflow
In-situ measurement on
inflow, SWE, etc.

Hydropower
: generation
e.g., vegetation, show

cover, water storage

"y generation data, e.g.,
/" RectiHyd, USACE,
Bureau of Reclamation

Satellite observations on
\\ land surface dynamics,

o

The tool provides probabilistic seasonal forecasts of reservoir inflow
and hydropower generation at individual plants and energy regions.

Our ML model uses multiple encoders to
extract information from various data and
employs graph networks to facilitate

information sharing across similar regions.

$ Cost-effective
M Renewable
Integration

5 . . Seasonal Forcast
Component 1: extract information from diverse data

| Output heads

= [ Decoder
Add & Norm

Image Ep€oder Data Encoder 3
Feed Forward

Add & Norm < T

Time Seri?m.oder

Add & Norm <

T T (i) &TNorm Add & Norm <«
Feed Forward Feed Forward Feed Forward Multi-Head
T— Nix T— Nex Cross Attention
Nox i
Add & Norm < Add & Norm < Add & Norm Add & Norm <
A A A A A A A A A Sk
Multi-Head Multi-Head Multi-Head Multi-Head
Attention Attention Attention Attention

covnet =
task-specific
s query embeding |
Ensemble Hydromet -, Remote sensing Climate indices, Reservoir inflow,
Geospatial data,

Condition G Data Hydropower generation
., : in-situ measurement

Learned Graph

Node Structure .

Component 2: learn from similar regions

View - I: i
Climate Zones

“ The model integrates comprehensive data to provide probabilistic forecasts of inflow and
hydropower generation, informing energy and water management decision.

32



| Two open-source code packages |
‘ Generative Al for UQ \ ‘ UQ for ML models \

* GenAl4UQ: Uncertainty Quantification (UQ) * UQnet: Quantify ML prediction uncertainty
package Using Conditional Generative Al and identify out-of-sample regimes.

Sample Data Preparation Labeled Data Pairs Generation using Monte Carlo Estimator

Prediction of streamflow,

L Natural science

@®n /\/\ Neutron sciences temperature, carbon fux Smart grid system ]
P, Neutron diffraction Prediction of transient
'.‘-'. data analysis source locations
ﬂ,:{(z;,y,nj:cm‘xw Dsain = {(@my¥ms 2m) : Zo = Tmlym, for m=1,..., M}
| GeN
Evaluation Supervised Learning of Conditional Generative Model N
Clean Energy Material sciences
: . - Hydropower and Material property }
. E E E carbon storage SNS faciiit prediction and design
=HE = : Lze‘rzzi‘:;:;zz";a‘:,":;r 1
g9 Yy * e | Do,
XY X = G(Y,Z: ¢); with Zy = X[Y and Z, = Z,Z = N(0,1,) : ;I-Iier::lfosr:rles * CNN: Convolutional NN
* GWN: GraphWaveNet
. . * GCN: GraphConvNet
e Quantify parameter uncertainty;
* Make probabilistic forecast; * Produce uncertainties consistent with confidence
* Computationally and memory efficient; level and prediction error;
e Perform amortized Bayesian inference; * Computationally efficient;
* Enable real-time and large-scale model calibration. e Appliable to various neural network architectures;

hitps://github.com/patrickfan/GenAl4UQ https://github.com/liusiyan/UQnet
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https://github.com/patrickfan/GenAI4UQ
https://github.com/liusiyan/UQnet

| Advancing land surface modeling through data-model integration

Physical Model

Data-Driven ML Model

Al Foundation Model

Inverse
uncertainty ;
quantification | 1

_________________

Forward
uncertainty |
propagation |

_______________
Uncertainty
reduction

Challenges:

* High computational costs;
* Large parameter uncertainty;

Our study:

* Efficient emulation;
* Generative Al for UQ.

LSTM network learns system @ ( ) LSTM simulates a

. . & & &) X R
dynamics from observations of LSTM unit t mapping for the inputs
[ = | [ over time to an output

environmental drivers and
~* to consider the memory

effect of drivers.

carbon/water fluxes to predict
future carbon/water fluxes

©® ® ©

Output: Observation of
carbon/water flux

Input: Observation of
environmental drivers

Terrestrial Ecosystem
puiites N
" g i S
\J, i f‘;r-:'.

Se y]‘!hf! L

* Generalizing across space and time;
* Explainability, physical consistency;
e Reliability under changing conditions;

Challenges:

Our study:

e Advanced ML integrating diverse data;
* Interpretable Al for explainability;
* UQ to improve predictive reliability.

Data Al Foundation Spplicatons
. Model
L Image Weather, climate
; : ) prediction
Spatiotemporal / > Climate
Training * Adaptation projection
e —
i Climate

Time series
2 fuase

20 s, . simulation
R, downscaling
wilgi/¥ W,
E3SM simulation

- Database
= acceleration

Challenges:

* Heterogeneous, unlabeled data
* Diverse Earth system modeling needs

Our study:

* Develop an Al foundation model
trained on CMIP6 climate data;

* Fine-tune for weather forecasting,
climate downscaling, and land model
acceleration.
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