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Land and Earth System models are increasingly being 
asked to provide information on societally-relevant 
impacts and adaptation associated with climate and 
environmental change

• Ecosystem vulnerability and impacts on carbon cycle and 
ecosystem services

• Water and food security in context of climate variability, 
change, and extreme weather

• Land-based mitigation solutions (net-zero targets); Impacts 
of land use and land-use change on climate, carbon, water, 
and extremes

• Hazard prediction (drought, floods, fire, heat waves, etc) 
under a changing climate

• Understand and exploit sources of predictability from land 
processes, Earth System prediction
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Will we have 
enough 
water?



Will we be able to 
produce enough food?



Where and when will 
people and ecoystems 
experience more 
extreme events?



Where are we going to 
put the carbon (and will 
it stay there)?
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water?



Example actionable science limitation: 
ESMs do not accurately simulate hydrologic sensitivity 

CMIP models do not accurately 
represent changes in runoff 
associated with changes in P or T, 
which limits usability of runoff 
projections for adaptation 
purposes

observations

models



Focal Sessions
● New approaches for subgrid heterogeneity
● Managing model complexity
● Towards sharing of modules across LSMs
● Input and forcing datasets
● Crop modeling and forestry
● Water and land management
● Coupling external models to LSMs
● Fire and humans
● Land model benchmarking
● Machine learning approaches and LSMs
● Parameter estimation and uncertainty

Goal of the summit was to identify 
collaborative steps or activities that could 
be taken to accelerate progress



Recordings of presentations available from the conference webpage

https://hydro-jules.org/lsms2022-resources



Formal
● Collectively create a Road Map to address the challenges to 

improve land models so that they are fit for purpose to address  
scientific and societal needs associated with anthropogenically 
and naturally-driven environmental change

● Develop plans for follow up meetings and working groups, which 
can be used as basis for modeling groups and collaborative 
partners to solicit funding to support development activities and 
to build a community effort to accelerate progress

Informal
● Develop a shared understanding of the ‘pain points’ in modern 

land model development and application
● Foster collaborative relationships to address these challenges

Goals of the Summit
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Climate science is in transition 

Urgent needs:
● actionable information (climate risks under 

different emissions scenarios; consequences of 
intervention/mitigation)

● more robust understanding of risks of tipping 
points

Yet, progress towards more accurate and reliable 
Earth System models remains slow



Next-generation Earth System modeling to address urgent 
mitigation and adaptation needs 

Figure from Eyring, Gentine, Camps-Valls, 
Lawrence, Reichstein (Nature Climate 
Change, 2024)

Harness new ML + data to 
transform ESMs

LEAP forward in the reliability, utility, and reach of climate projections 
through synergistic innovations in data science and climate science



Next-generation Earth System modeling to address urgent 
mitigation and adaptation needs 

Figure from Eyring, Gentine, Camps-Valls, Lawrence, 
Reichstein (Nature Climate Change, 2024)

So, what is needed to realize and 
accelerate the potential of ML to 
improve land modeling?



The ILMF emerged from the Land 
Surface Modelling Summit in Oxford in 
Sept 2022. It provides a forum through 
which land modelling centres and 
researchers can interact and collaborate 
on mutually beneficial projects by

● sharing ideas
● promoting relevant workshops 

and meetings
● advertising job opportunities
● coordinating working groups

Initial working groups will focus on 
shareable modules, parameter 
estimation, the challenges of integrating 
humans into ESMs, and benchmarking.

To join the ILMF, goto 
https://rebrand.ly/ILMF 

Available at 
https://hydro-jules.org/international-l
and-modeling-forum-ilmf

https://rebrand.ly/ILMF
https://hydro-jules.org/international-land-modeling-forum-ilmf
https://hydro-jules.org/international-land-modeling-forum-ilmf


More accessible and modular code bases 

So, what is needed to realize and 
accelerate the potential of ML to 
improve land modeling?

● Land model code bases are large, complex, and have 
legacies of 20+ years

○ 100’s of thousands of lines of (Fortran!) code
○ Tangled code webs with lots of technical debt

● Code complexity and Fortran can be a barrier to entry for 
ML experts (or really anyone trying to advance the code)

○ Conversion to python-based language would be 
ideal, but costly

○ Cleaner and more modular code will help



Code Refactoring

Slide credit Bill Sacks



Livable Code

Slide credit Bill Sacks



Livable Code

Slide credit Bill Sacks
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Pathways Towards 
Shareable Modules for Land 
Models
What do we mean by modularity?



Unifying model physics

� The problem: A glut of hydrological models (Clark et al., WRR 2011) – in many cases there are more models in use than there are 

algorithms to populate them (same algorithms across multiple models)

� The challenge: Can we define a general “master modeling template” (general design principles) from which existing models can be 
constructed and new models derived (Clark et al., WRR 2015)?

� The challenge: Can we unify model building blocks across multiple levels of granularity?

Multiple land 
models

(e.g., LIS, FEWS)

Multiple model 
components

(e.g., MMS, CHM)

Multiple 
parameterizations

(e.g., FUSE, NOAH-MP)

𝑑𝑑𝑆𝑆𝑎𝑎= 𝑟𝑟 − 
𝑞𝑞𝑏𝑏

𝑑𝑑𝑑𝑑

increasing levels of granularity

How do you thread the needle 
between:

1. Multiple models that 
work together in the same 
framework; and

2. Multiple 
parameterizations that 
work together in a 
plug-and-play 
environment

Sharable model 
extensions

(e.g, FATES)



The Functionally Assembled 
Terrestrial Ecosystem 
Simulator (FATES): Modularity, 
Configurability, and 
Interoperability

C. Koven, R. Fisher, R. Knox,
B. Christoffersen, Y. Fang, A. Foster, J. Holm, E. Kluzek, L. Kueppers, D. Lawrence, G. Lemieux, S. Levis, M. 

Longo, J. Needham, W. Sacks, J. Shuman, M. Vertenstein, A. Walker, W. Wieder, C. Xu, and many others



FATES (Functionally Assembled Terrestrial Ecosystem Simulator)

Jointly developed by DOE, Norway, NCAR and others

vegetation cohort-specific model (stand structure)
30-minute photosynthesis and fluxes
daily growth and allocation
competition and coexistence



Process-level modularity vs configurability 
(We have focused on both with FATES)

Fisher and Koven, 2020
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Process-level modularity vs configurability 
(We have focused on both with FATES)

Fisher and Koven, 2020



Modularisation in 
Land Surface models:

discussion & future steps

Martyn Clark, Philippe Peylin, Dave Lawrence, Eleanor Blyth, Simon 
Dadson, Charlie Koven, Dai Yamazaki,...



Two possibles paths for international collaboration …

High level components
(ex. CamaFlood, FATES,...)

Global LSM

Individual processes

Approach 1 
“Top - down”

Start with a 
concrete 

example (ex. 
Leaf phenology,
SOM decomp.,..

Define generic 
“Modules” with 

standard 
interfaces

Intermediate level: 
groups of processes

(ex. Snow dynamic, Leaf level 
photosynthesis, Soil C dyn., ... )

Low level: 
Individual processes
(ex. process descriptions...)

Approach 2 
“bottom up”



Building blocks towards a hybrid Earth System Model 



Robust and flexible Implementation of 
ML-based parameterizations requires 

Fortran-Python bridge

Building blocks towards a hybrid Earth System Model 

FTorch

ML-parameterization

● FTorch implementation with CESM working 
fairly well

● To enable broad use, needs an integration 
plan to bring fully into CESM3 infrastructure

● Documentation for users
● Robust testing, edge-case evaluation
● GPU-CPU combo testing
● Ideally, some consistency in implementation 

of Fortran-Python bridge across modeling 
centers
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The Community Land Model (CLM5) 
Parameter Perturbation Experiment

Quantifying parametric uncertainty and working towards automated calibration

Linnia Hawkins, Daniel Kennedy, Katie Dagon



Motivation for the CLM PPE Project
● Growing complexity and 

comprehensiveness of land models → 
increasing # of uncertain parameters 
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Motivation for the CLM PPE Project
● Growing complexity and 

comprehensiveness of land models → 
increasing # of uncertain parameters CLM5(BGC) has over 200 parameters

Drawbacks of hand tuning
- Difficult to diagnose structural 
improvements 
- Challenging to incorporate new 
parameterizations 
- Impractical requisite knowledge 
base 
- Doesn’t scale well with 
increasing complexity



Motivation for the CLM PPE Project

CMIP5: RCP8.5

Equivalent to 
~60 years of
 current FF 
emissions

Emissions driven RCP8.5:   795 to 1140 ppm CO2

→ ±1.2C uncertainty on top of 3.7C projected change

● Growing complexity and 
comprehensiveness of land models → 
increasing # of uncertain parameters 

● Contribution of parameter uncertainty 
to total uncertainty expected to be 
large, but largely unquantified



Motivation for the CLM PPE Project

• Ecosystem vulnerability and impacts on carbon cycle and 
ecosystem services

• Water and food security in context of climate change, 
climate variability, and extreme weather

• Ecological, hydrological, and Earth system prediction

• Terrestrial contribution to Net Zero emissions goals

● Growing complexity and 
comprehensiveness of land models → 
increasing # of uncertain parameters 

● Contribution of parameter uncertainty 
to total uncertainty expected to be 
large, but largely unquantified

● Systematic parameter calibration will 
enhance accuracy of simulations, and 
increase suitability and accessibility of 
CLM for actionable science



Unprecedented availability of Earth Observations



GEDI

ECOSTRESS

OCO-3 (SIF)

Unprecedented availability of Earth Observations



NEON

Unprecedented availability of Earth Observations

Flux tower networks like NEON, Ameriflux, FluxNet



And new integrated metrics packages

International Land Model 
Benchmarking (ILAMB) project

• Integrates analysis of ~35 land 
variables against 90+ global, regional, 
and site-level observational datasets

• Graphics and scoring system for
▪ RMSE
▪ bias
▪ seasonal cycle phase
▪ spatial patterns
▪ interannual variability
▪ variable-to-variable 

relationships
DOE, NCAR, University collaboration

CMIP6



CLM PPE Project
- Phase 0: Infrastructure development (fast spinup, expose parameters, identify 

parameter ranges, ensemble and analysis scripting) Until recently, computationally 
prohibitive to attempt to calibrate 
global CLM(BGC)

● Cluster analysis → 
reasonably replicate global 
simulation results with 400 
gridcells (Hoffman et al., 
2013)

● Matrix solution to C/N 
initial states decreases 
spinup timescale by >10X 
(Lu et al., 2020)

Sparse Grid



CLM PPE Project
- Phase 0: Infrastructure development (fast spinup, expose parameters, identify 

parameter ranges, ensemble and analysis scripting)

- Phase 1: One-at-a-time parameter ensembles under range of environmental 
perturbations 

Top 12 params regulating       
CO2 fertilization effect on global 

vegetation carbon

• Control: present-day climate and CO2

• Climate: 1850 and SSP3-7 CESM2 climate

• CO2: 1850 and SSP3-7

• N-dep: +5 gN/m2/yr

• Last Glacial Maximum conditions

• Restrict parameter ranges again if low-side 
environmental perturbation doesn’t pass 
reasonableness checks



CLM5 Perturbed Parameter Ensemble Project

● Phase 0: Infrastructure development (fast spinup, expose 
parameters, identify parameter ranges, ensemble and 
analysis scripting)

● Phase 1: One-at-a-time parameter ensembles under 
range of environmental perturbations (low/high CO2, PI 
and future climate, N-dep)

CLM PPE Spinoff Projects

● Land-atmosphere interactions (Univ Washington)
● NEON site calibration (Auburn Univ)
● ET recession timescales (Oregon State)
● Arctic river flow (RAL)
● Land influence on drought (CGD)
● Hydrologic sensitivity (Cornell Univ)
● Tropical carbon cycle interannual variability (JPL)
● GPP response to permafrost thaw (Northern Arizona 

U)
● …

CLM5 has over 200 parameters



Range is nearly as large 
as across CMIP6 models

Important params for Leaf Area Index

Parameter Param type

jmaxb0
jmaxb1
wc2wjb0
theta_cj
leafcn (PFT)
jmaxha
tpu25ratio
hksat_sf
fff
sucsat_sf
d_max
kmax (PFT)
medlynslope (PFT)
medlynintercept (PFT)
crit_dayl
soilpsi_off
leaf_long (PFT)
slatop (PFT)
lmr_intercept_atkin
lmrha
froot_leaf (PFT)
FUN_fracfixers (PFT)
pc

Photosynthesis

Soil hydrology

Plant water use

Phenology

Leaf physiology

Respiration

Allocation
Nitrogen uptake
Snow

Towards global parameter calibration (testing with LAI calibration)



History Matching

Train emulator for each PFT 

P
FT

L
A
I

Input parameters
1500 sims x 56 params

X y Broadleaf Evergreen
Tropical Tree

Broadleaf Deciduous 
Boreal Shrub Tree

CLM CLM

Em
ul

at
ed

Em
ul

at
ed

Leaf Area Index



History Matching

Train emulator for each PFT

History Matching
- Sample
- Emulate
- Score (cost function) 
- Select best 500 parameter 

sets

Leaf Area Index Leaf Area Index



Results (global mean)

LAI 



Results (global mean)

LAI GPP Biomass 



Towards global parameter calibration (testing with LAI calibration)

MAE = 1.36

MAE = 0.6



Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters) 

Important params for Leaf Area Index

Parameter Param type

jmaxb0
jmaxb1
wc2wjb0
theta_cj
leafcn (PFT)
jmaxha
tpu25ratio
hksat_sf
fff
sucsat_sf
d_max
kmax (PFT)
medlynslope (PFT)
medlynintercept (PFT)
crit_dayl
soilpsi_off
leaf_long (PFT)
slatop (PFT)
lmr_intercept_atkin
lmrha
froot_leaf (PFT)
FUN_fracfixers (PFT)
pc

Photosynthesis

Soil hydrology

Plant water use

Phenology

Leaf physiology

Respiration

Allocation
Nitrogen uptake
Snow



Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters) 

–200 to +50 PgC

–100 to +75 PgC

Land-only CMIP6 (ILAMB) 



Range: ±600PgC
as large as across all 
CMIP6 models

Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters) 



500 land-only simulations
with latin hypercube generated
parameter sets (25 parameters) 

Range ±600PgC is as 
large as across CMIP6 
models

Constraining land carbon cycle projections



Can we constrain by retaining only parameter sets 
with reasonable values for ‘observed’ quantities?
• leaf area index mean / trend

Constraining land carbon cycle projections (history matching)



Can we constrain by retaining only parameter sets 
with reasonable values for ‘observed’ quantities?
• leaf area index mean / trend
• total land use flux (e.g., from bookkeeping models)
• recent changes in live woody biomass from 

inventories/satellite (Xu et al, 2021)

Constraining land carbon cycle projections (history matching)



500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters) 

Constraining land carbon cycle projections
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500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters) 

Constraining land carbon cycle projections

Still a diversity of carbon 
trend responses, even in 
constrained sets, but range 
is much smaller

Can we build a future 
emissions-driven Large 
Ensemble by including 
multiple land carbon 
parameter sets to span this 
uncertainty as another 
ensemble dimension (in 
addition to Initial 
conditions)?



Parameter Estimation challenges (incomplete list)



Many emulation algorithms with differing performance

Emulating global 
annual mean leaf 
area index

Thanks to the ESEm Python 
package:
https://github.com/duncanwp/ESEm
Watson-Parris et al. 2021

**Preliminary**
hyperparameter tuning 
in progress!

63

https://github.com/duncanwp/ESEm


Challenges with PFT parameters

To reduce regional biases, need to be able 
to tune PFT parameters independently 

1) Too many parameters (10-15 PFT 
parameters x 16 PFTs = 300+) ensemble members x params

(1500 x 300+)

X



Challenges with PFT parameters

To reduce regional biases, need to be able 
to tune PFT parameters independently 

1) Too many parameters (10-15 PFT 
parameters x 16 PFTs = 300+)

2) Most observational datasets are not 
disaggregated by PFT 

ShrubGrass

T
R
E
E

Fractional PFT coverage in 1 gridcell



Challenge: Coupled vs Land-only parameter impacts

Impact of parameter 
perturbations can be different 
in Coupled vs Land-only 
(offline) simulations, even 
exhibiting a different sign of 
response

Figure from Zarakas et al., in review 



Parameter Estimation challenges (incomplete list)

● As you add constraints (new obs variables and/or constraints beyond means like 
annual cycle amplitude, interannual variability, trends) → possible to likely that cannot 
find reasonable parameter sets that meet all constraints → structural errors

● Calibrating the whole model all at once is likely impractical as model complexity rises 
(e.g., FATES full competition mode)

○ Calibration cascade methodology likely needed



CalLMIP (aimesproject.org/cal-lmip/)



Next-generation Earth System modeling to address urgent 
mitigation and adaptation needs 

Figure from Eyring, Gentine, Camps-Valls, 
Lawrence, Reichstein (Nature Climate 
Change, 2024)

Harness new ML + data to 
transform ESMs

LEAP forward in the reliability, utility, and reach of climate projections 
through synergistic innovations in data science and climate science



Thank you!



Machine Learning for Land Model Emulation

71

Output: land 
variable/metric of 
interest

Machine learning emulator (e.g., 
neural network, random forest, 
gaussian process model)

Input: x number of 
land model parameter 
values


