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LAND SURFACE MODELLING SUMMIT

Land and Earth System models are increasingly being
asked to provide information on societally-relevant
impacts and adaptation associated with climate and
environmental change

Ecosystem vulnerability and impacts on carbon cycle and
ecosystem services

Water and food security in context of climate variability,
change, and extreme weather

Land-based mitigation solutions (net-zero targets); Impacts
of land use and land-use change on climate, carbon, water,
and extremes

Hazard prediction (drought, floods, fire, heat waves, etc)
under a changing climate

Understand and exploit sources of predictability from land
processes, Earth System prediction

nature
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EDITORIAL | 16 August 2022

We must get a grip on forest science
—beforeit’s too late

Treesare one of our biggest carbon hopes. Supporting the scientists studying them
should be a much higher priority.




Will we have
enough
water?
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Will we be able to
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produce enough food




Where and when will
people and ecoystems
experience more
extreme events?




Where are we going to
put the carbon (and will
it stay there)?
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Example actionable science limitation:

ESMs do not accurately simulate hydrologic sensitivity

Absolute values 1950-2008

140 1 — Observations CMIP models do not accurately
[J Models
represent changes in runoff
120 -
S — associated with changes in P or T,
1001  Slope which limits usability of runoff
o
g s projections for adaptation
S o 801
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Focal Sessions

New approaches for subgrid heterogeneity
Managing model complexity

Towards sharing of modules across LSMs
Input and forcing datasets

Crop modeling and forestry
Water and land management
Coupling external models to LSMs
Fire and humans

Land model benchmarking
Machine learning approaches and LSMs
Parameter estimation and uncertainty

Goal of the summit was to identify
collaborative steps or activities that could
be taken to accelerate progress
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Recordings of presentations available from the conference webpage

https://hydro-jules.org/lsms2022-resources



LSMS 20 Goals of the Summit

RFACE MODELLING SUMMIT

Formal

e Collectively create a Road Map to address the challenges to
improve land models so that they are fit for purpose to address
scientific and societal needs associated with anthropogenically
and naturally-driven environmental change

e Develop plans for follow up meetings and working groups, which
can be used as basis for modeling groups and collaborative
partners to solicit funding to support development activities and
to build a community effort to accelerate progress

Informal

® Develop a shared understanding of the ‘pain points’ in modern
land model development and application

e Foster collaborative relationships to address these challenges

NION S Association

OPLE

WORKING TOGETHER

Management & Problem solving
B PARTNERSH




actionable information (climate risks under

different emissions scenarios; consequences of
intervention/mitigation)

more robust understanding of risks of tipping
points

5&* Earth System models remains slow
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Next-generation Earth System modeling to address urgent

mitigation and adaptation needs

Hybrid (physics + ML) ESMs ML dowmszaling/

regional refinement

\ Reduced systematic

errors and more accurate
climate projections

Earth
observations
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Harness new ML + data to [ 5 ]
transform ESMs L E =
Figure from Eyring, Gentine, Camps-Valls, LEAP forward in the reliability, utility, and reach of climate projections

Lawrence, Reichstein (Nature Climate

Change, 2024) through synergistic innovations in data science and climate science




Next-generation Earth System modeling to address urgent
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International Land Modelling Forum (ILMF)

The ILMF emerged from the Land
Surface Modelling Summit in Oxford in
Sept 2022. It provides a forum through
which land modelling centres and
researchers can interact and collaborate
on mutually beneficial projects by

e sharing ideas

e promoting relevant workshops
and meetings

e advertising job opportunities

e coordinating working groups

Initial working groups will focus on /
shareable modules, parameter

estimation, the challenges of integrating
humans into ESMs, and benchmarking.

/

LSS 2022 4 HILIVLF

INTERNATIONAL LAND MODELIN

To join the ILMF, goto
https://rebrand.ly/ILMF

International Land Modelling Forum e
(ILMF) Interactive Webinars T

September - October 2023

Available at @
https://hydro-jules.org/international-I|
and-modeling-forum-ilmf
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More accessible and modular code bases

e Land model code bases are large, complex, and have

So, what is needed to realize and legacies of 20+ years

accelerate the potential of ML to

improve land modeling? o 100’s of thousands of lines of (Fortran!) code

o Tangled code webs with lots of technical debt

e Code complexity and Fortran can be a barrier to entry for
ML experts (or really anyone trying to advance the code)
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Code Refactoring

Before

some_subroutine

calc. flux |

update state |
calc. flux 2

calc. flux 3

update state 2

Slide credit Bill Sacks



Livable Code

https://brightonruby.com/20|7/livable-code-sarah-mei/

Slide credit Bill Sacks You have to live here



Livable Code

https://brightonruby.com/2017/livable-code-sarah-mei/

You GET to live here
Slide credit Bill Sacks



UNIVERSITY OF

CALGARY

Pathways Towards
Shareable Modules for Land

Models

What do we mean by modularity?

Martyn P. Clark, PhD
Professor of Hydrology and Schulich Chair for Environmental Prediction
Department of Civil Engineering, Schulich School of Engineering, University of

Calgary

21 September 2023
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0 The problem: A glut of hydrological models (Clark et al., WRR 2011) — in many cases there are more models in use than there are
algorithms to populate them (same algorithms across multiple models)

Unifying model physics

0 The challenge: Can we define a general “master modeling template” (general design principles) from which existing models can be
constructed and new models derived (Clark et al., WRR 2015)?

0 The challenge: Can we unify model building blocks across multiple levels of granularity?

Multiple land Sharable model Multiple model Multiple
models extensions components parameterizations

How do you thread the needle

between:

1. Multiple models that
work together in the same
framework; and

2. Multiple

parameterizations  that
work  together in a
plug-and-play
environment

=

(e.g., LIS, FEWS) (e.g, FATES) (e.g., MMS, CHM)  (e.g., FUSE, NOAH-MP)

; increasing levels of granularity




The Functionally Assembled
Terrestrial Ecosystem
Simulator (FATES): Modularity,
Configurability, and

FATES Interoperability

C. Koven, R. Fisher, R. Knox,
B. Christoffersen, Y. Fang, A. Foster, J. Holm, E. Kluzek, L. Kueppers, D. Lawrence, G. Lemieux, S. Levis, M.
Longo, J. Needham, W. Sacks, J. Shuman, M. Vertenstein, A. Walker, W. Wieder, C. Xu, and many others
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FATES (Functionally Assembled Terrestrial Ecosystem Simulator)

ATM

Short and

Long-wave
Radiation

vegetation cohort-specific model (stand structure)
30-minute photosynthesis and fluxes

daily growth and allocation

competition and coexistence

5}%\417? N\ NCAR Jointly developed by DOE; Norway, NCAR and others




Process-level modularity vs configurability
(We have focused on both with FATES)

[CStonge ] Watershed

L :

-‘”‘“‘_—— S e
[ Management]

(b) Some Possible Simplified
Configurations of a Land Surface Model

Fisher and Koven, 2020



Process-level modularit

All Processes
Represented via a
Multi-Hypothesis

Approach, eg::

Stomatal Cond.

s configurability
cused on both with FATES)

| Interception
& Evaporation

bl el

[Recrutment]

N =
| Mlnenlisalionl
Simplified Model for
Soil Ecology

Simplified Model for
[

ydrology

Snow Physics | Canopy l— oo
e # et [ [0 |
Z S R A
Leaf
Fm—
i i i
| e Ccseas] Duawbance
Femal|[ - | — =
|
Interception Optical [[Morphology | [CForesty ]
Thase Charg | & Evaporation ies >
A Land C
"\«m: S| Stem | C
’ | [P | (e [(ome] o ]
ansport
I - | CStov££| | Growth | t
i [ o | _
= $1
Roots | A ¢
[mobazaion [Warvpate ] s
L | ,
iceblce o
' P ]
Vertical Tanspor Stoichiomet
aLsacning  [5ecdroducton] [ Recnsiment] [ oraity ] N\ \» v 4y

Fisher and Koven, 2020

(b) Some Possible Simplified
Configurations of a Land Surface Model




Process-level modularity vs(configurability
(We have focused on both wi
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Modularisation In

Land Surface models:
discussion & future steps

Martyn Clark, Philippe Peylin, Dave Lawrence, Eleanor Blyth, Simon
Dadson, Charlie Koven, Dai Yamazaki,...



Two possibles paths for international collaboration ...

Approach 1
Global LSM “Top - down”
Define generic
High level components “Modules” with
(ex. CamaFlood, FATES,...) standard
interfaces
Intermediate level:
groups of processes ,
(ex. Snow dynamic, Leaf level Start with a
photosynthesis, Soil C dyn., ... ) concrete
example (ex.
Low level: Leaf phenology,
Individual processes SOM decomp.,..
(ex. process descriptions...)
Approach 2

£

Individual processes “bottom up”



Building blocks towards a hybrid Earth System Model
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Building blocks towards a hybrid Earth System Model

Robust and flexible Implementation of
ML-based parameterizations requires
Fortran-Python bridge

e FTorch implementation with CESM working
(.‘ FTorch fairly well

e To enable broad use, needs an integration
plan to bring fully into CESM3 infrastructure
Documentation for users
Robust testing, edge-case evaluation
GPU-CPU combo testing

ML- parameterlzatlon Ideally, some consistency in implementation
of Fortran-Python bridge across modeling
centers

PyTo rch
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Motivation for the CLM PPE Project

e Growing complexity and Biogeochemical cycles

comprehensiveness of land models —
increasing # of uncertain parameters




Motivation for the CLM PPE Project

e Growing complexity and
comprehensiveness of land models —

increasing # of uncertain parameters CLM5(BGC) has over 200 parameters

# PARAMETERS




Motivation for the CLM PPE Project

e Growing complexity and
comprehensiveness of land models —

increasing # of uncertain parameters CLM5(BGC) has over 200 parameters

Drawbacks of hand tuning

- Difficult to diagnose structural
improvements

# PARAMETERS

- Challenging to incorporate new
parameterizations

- Impractical requisite knowledge
base

- Doesn’t scale well with
increasing complexity




Motivation for the CLM PPE Project

e Growing complexity and CMIP5;: RCP8.5

comprehensiveness of land models —

. . : 800 - “
increasing # of uncertain parameters 1 (b) /\
4
600 - /|| Equivalentto
e Contribution of parameter uncertainty i ' ~60 years of
to total uncertainty expected to be g:qri;esri‘;rfg

large, but largely unquantified

0

-200

Cumulated land flux (PgC)

T T T T

1860 1900 1940 1980 2020 2060 2100

Emissions driven RCP8.5: 795 to 1140 ppm CO,

— +1.2C uncertainty on top of 3.7C projected change

NCAR
UCAR




Motivation for the CLM PPE Project

e Growing complexity and
comprehensiveness of land models —
increasing # of uncertain parameters

e Contribution of parameter uncertainty
to total uncertainty expected to be
large, but largely unquantified

e Systematic parameter calibration will
enhance accuracy of simulations, and * Ecosystem vulnerability and impacts on carbon cycle and

increase suitability and accessibility of ecosystem services
CLM for actionable science

Water and food security in context of climate change,
climate variability, and extreme weather

Ecological, hydrological, and Earth system prediction

Terrestrial contribution to Net Zero emissions goals

NCAR
UCAR







Unprecedented availability of Earth Observations
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Unprecedented availability of Earth Observations

. Flux tower networks like NEON, Ameriflux, FluxNet




CMIP6

Ecosystem and Carbon Cycle

Biomass

Burned Area

Carbon Dioxide

Gross Primary Productivity

Leaf Area Index

Global Net Ecosystem Carbon Balance

Net Ecosystem Exchange

Ecosystem Respiration

Soil Carbon

Hydrology Cycle

Evapotranspiration

Evaporative Fraction

Latent Heat

Runoff

Sensible Heat

Terrestrial Water Storage Anomaly

Permafrost

Radiation and Energy Cycle

Forcings

Surface Air Temperature

Diurnal Max Temperature

Diurnal Min Temperature

Diurnal Temperature Range

Precipitation

Surface Relative Humidity

Surface Downward SW Radiation

Surface Downward LW Radiation

Relationships

BurnedArea/GFED4S

GrossPrimaryProductivity/GBAF

LeafArealndex/AVHRR

LeafArealndex/MODIS

Evapotranspiration/GLEAM

Evapotranspiration/MODIS

International Land Model
Benchmarking (ILAMB) project

* Integrates analysis of ~35 land
variables against 90+ global, regional,
and site-level observational datasets

* Graphics and scoring system for
- RMSE
» bias
» seasonal cycle phase
» spatial patterns

= interannual variability

= variable-to-variable
relationships

DOE, NCAR, University collaboration

Relative Scale m

RUBISCO

Worse Value  Better Value

Missing Data or Error




CLM PPE Project

- Phase 0: Infrastructure development (fast spinup, expose parameters, identify

parameter ranges, ensemble and analysis scripting) Until recently, computationally
prohibitive to attempt to calibrate
global CLM(BGC)

e Cluster analysis —
reasonably replicate global
simulation results with 400

gridcells (Hoffman et al.,
2013)

# PARAMETERS

e Matrix solution to C/N
initial states decreases
spinup timescale by >10X
(Lu et al., 2020)




CLM PPE Project

Phase 0: Infrastructure development (fast spinup, expose parameters, identify
parameter ranges, ensemble and analysis scripting)

Phase |: One-at-a-time parameter ensembles under range of environmental

Top 12 params regulating
CO, fertilization effect on global
vegetation carbon

perturbations

. Control: present-day climate and CO,

. Climate: 1850 and SSP3-7 CESM2 climate

+ €O, 1850 and SSP3-7

O N-dep: +5 gN/m2/yr

. Last Glacial Maximum conditions

0 Restrict parameter ranges again if low-side
environmental perturbation doesn’t pass
reasonableness checks

kmax A ® : ©
tpuse_sf 4 0—0
medlynintercept 4 o—e
psi50 4 0—6
nstem o-——e
sand_pf 0——0
wc2wjb0 A o——e
krmax A 0—-—0
Imrha H—(—)
medlynslope - o—o
tpu25ratio 4 o—-o
jmaxb0 0——9

T

1.5 1.6 1.7 1.8 1.9
Effect of C867 on TOTVEGC [-]

NCAR
UCAR




CLMS5 Perturbed Parameter Ensemble Project

CLM PPE Spinoff Projects

Phase 0: Infrastructure development (fast spinup, expose
parameters, identify parameter ranges, ensemble and
analysis scripting) CLM5 has over 200 parameters
Phase 1: One-at-a-time parameter ensembles under
range of environmental perturbations (low/high CO,, P
and future climate, N-dep)
: IHH 27
LAY T i
“ & o )

# PARAMETERS

Land-atmosphere interactions (Univ Washington)

o o . . ‘</ = \ A N
NEON sﬂel calllbratlon (Auburn Univ) S *fo‘*“o Q\\» o‘f 6\0 ro, & &E V@\»‘
ET recession timescales (Oregon State) e oO" & & &S \f\gf &
. . N = \s
Arctic river flow (RAL) S TS o S

Land influence on drought (CGD)
Hydrologic sensitivity (Cornell Univ)
Tropical carbon cycle interannual variability (JPL)

GPP response to permafrost thaw (Northern Arizona
U)
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Towards global parameter calibration (testing with LAI calibration)

Generate a perturbed parameter
ensemble

Ensemble

Train machine
learning emulator

Confront model with
observational data

Metrics

¢
-
‘;.'

Constrain
posterior
parameter
space

lterative refocusing

Important params for Leaf Area Index
Parameter Param type
jmaxb0 Photosynthesis
jmaxb
wc2wijb0
theta_cj
leafcn (PFT)
jmaxha
tpu25ratio
hksat_sf Soil hydrology
fff
sucsat_sf
d_max
kmax (PFT) Plant water use
medlynslope (PFT)
medlynintercept (PFT)
crit_dayl Phenology
soilpsi_off
leaf_long (PFT) Leaf physiology
slatop (PFT)

Imr_intercept_atkin Respiration
Imrha

froot_leaf (PFT) Allocation
FUN_fracfixers (PFT) Nitrogen uptake
pc Snow




History Matching

Train emulator for each PFT Leaf Area Index
y Broadleaf Evergreen Broadleaf Deciduous
Tropical Tree Boreal Shrub Tree
. N - R*=0.91
| :mul:;:?stdevzo.B ,,/+'* 4 Emulator stdev = 0.19 ’+
P 12 #,#* 3 ‘W’**
Ulo« 9
FT 2 2
O s ©?
Input parameters S =
1500 sims x 56 params L £ £, k %
A S - H i#
24 + +’++, o’ 1 g
| s | M
ol , : ; , - - 5 1 : 3 3
. J CLM CLM




History Matching

Train emulator for each PFT

History Matching

Sample

Emulate

Score (cost function)
Select best 500 parameter
sets

BETT
CLM6-PPE
400 1 CLM6-wavel
CLM-SP
300 A +-30%
200 A
100 -
0 T — T T
0 5 10 15

Leaf Area Index

BDBS

250 ~

200 A

150 A

100 +

50 -

Leaf Area Index




Results (global mean)

LAI

CLM6-LHC
o CLM6-wavel

350 A

300 A

250 A

200 A

150 A

100 A

50 A

1 2 3 4 5
LAl (m2/m2)
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Results (global mean)

LAI

350 A

300 A

250 A

200 A

150 A

1 2
LAl (m2/m2)

@‘@LE/\D

CLM6-LHC
. CLM6-wavel

3 4

GPP

Biomass

400

350 A

300 A

250 A

200 A

150 A

100 A

50

50

100 150
GPP (PgC/yr)

200

350 A

300 -

250 A

200 A

150 -

100 ~
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500 1000
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Towards global parameter calibration (testing with LAI calibration)

Generate a perturbed parameter
ensemble

Train machine
learning emulator

ML Emulation
oo

< 'e) Te .

,‘: o) —
T

Confront model with
observational data

Constrain

posterior
lterative refocusing parameter

\_/ space

MAE = 1.36

MAE = 0.6

Default
Leaf Area Bias

Tuned
Leaf Area Bias




Constraining land carbon cycle projections

500 land-only simulations Important params for Leaf Area Index
with Latin Hypercube generated
parameter sets (25 parameters) Parameter Param type
jmaxb0 Photosynthesis
CLM-PPE SSP 3-7.0 e
6001 wc2wjb0
%) theta_cj
> 4001 leafcn (PFT)
= jmaxha
- .
£ 2001 tpu25ratio
n Sink hksat_sf Soil hydrology
° fff
5 0 sucsat_sf
g Source d_max
= —2001 kmax (PFT) Plant water use
= medlynslope (PFT)
£ _ ] medlynintercept (PFT)
8 400 crit_dayl Phenology
soilpsi_off
—6001 : . : leaf _long (PFT) Leaf physiology
1850 1900 1950 2000 slatop (PFT)
Imr_intercept_atkin Respiration
Imrha
froot_leaf (PFT) Allocation
NCAR FUN_fracfixers (PFT) Nitrogen uptake
UCAR pc | Snow




Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)

CLM-PPE SSP 3-7.0

600
400 1
200+

Sink
0

Source
—200+

—400

Cumulative Land Sink (PgC)

—600 -

1850

1900

1950

2000

Land Source

Land-only CMIP6 (ILAMB)

P9l

~100 to +75 PgC

%

Land Sink

1860 1880 1900

—200 to +50 PgC
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500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)

Constraining land carbon cycle projections
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Constraining land carbon cycle projections

500 land-only simulations

with latin hypercube generated Range *600PgC is as
parameter sets (25 parameters) large as across CMIP6
CLM-PPE SSP 3-7.0 models
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Constraining land carbon cycle projections (history matching)

10 Can we constrain by retaining only parameter sets
with reasonable values for ‘observed’ quantities?
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Constraining land carbon cycle projections (history matching)

10 Can we constrain by retaining only parameter sets
with reasonable values for ‘observed’ quantities?
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Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)
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Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)
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Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)

CLM-PPE SSP 3-7.0
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Constraining land carbon cycle projections

500 land-only simulations
with Latin Hypercube generated
parameter sets (25 parameters)
Still a diversity of carbon

CLM-PPE SSP 3-7.0 trend responses, even in

600+ constrained sets, but range
) is much smaller
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Parameter Estimation challenges (incomplete list)




Many emulation algorithms with differing performance

Gaussian Process Regression

Artificial Neural Network
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https://github.com/duncanwp/ESEm

Challenges with PFT parameters

To reduce regional biases, need to be able
to tune PFT parameters independently

1) Too many parameters (10-15 PFT
parameters x 16 PFTs = 300+)

ensemble members x params
(1500 x 300+)




Challenges with PFT parameters

Fractional PFT coverage in 1 gridcell

To reduce regional biases, need to be able
to tune PFT parameters independently

mim 30 -

1) Too many parameters (10-15 PFT

Grass Shrub
parameters x 16 PFTs = 300+)

2) Most observational datasets are not
disaggregated by PFT
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Challenge: Coupled vs Land-only parameter impacts

Atmospheric modulation of ET changes

5 T” b ol Vet 72,

Impact of parameter
perturbations can be different
in Coupled vs Land-only
(offline) simulations, even
exhibiting a different sign of
response

Dampening <N Y ;g
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Slope of Linear Regression between Coupled
and Offline Changes in Latent Heat Flux

Stippling indicates not statistically significantly different from 1

Figure from Zarakas et al., in review
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Parameter Estimation challenges (incomplete list)

e As you add constraints (new obs variables and/or constraints beyond means like
annual cycle amplitude, interannual variability, trends) — possible to likely that cannot
find reasonable parameter sets that meet all constraints — structural errors

e (Calibrating the whole model all at once is likely impractical as model complexity rises
(e.g., FATES full competition mode)

o Calibration cascade methodology likely needed




CalLMIP (aimesproject.org/cal-Imip/)

Calibrated Land Model Intercomparison Project (CalLMIP):

Planning & Development Workshop

Virtual Workshop Dates

The workshop will consist of three sessions, each lasting 1.5 hours. To accommodate participants across different time zones,
we are offering two time options per session: one for the eastern US/EU time zones and one for the Western US/Australia/Asia
time zones.

« Session 1: Thursday, March 6 at 8:00-9:30 pm EST OR Friday, March 7 at 10:00-11:30 am EST (time zone converter)

« Session 2: Wednesday, March 19 at 10:00-11:30 am EDT OR Wednesday, March 19 at 8:00-9:30 pm EDT (time zone
converter)

« Session 3: Tuesday, April 1st at 10:00-11:30 am EDT OR Tuesday, April 1st at 8:00-9:30 pm EDT (time zone converter)

Workshop Organizers

Natasha MacBean, Nina Raoult, Natalie Douglas, Jana Kolassa, Tristan Quaife, Istem Fer, Daniel Kennedy, Linnia Hawkins,

Katie Dagon, Hannah Liddy




Next-generation Earth System modeling to address urgent

mitigation and adaptation needs

Hybrid (physics + ML) ESMs ML dowmszaling/

regional refinement

\ Reduced systematic

errors and more accurate
climate projections

Earth
observations
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Machine Learning for Land Model Emulation

Machine learning emulator (e.g.,
Input: x number of neural network, random forest, :
land model parameter gaussian process model) Output: land
values variable/metric of
interest
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