

Development of Water Isotope Ratio Data Assimilation System with Ensemble Kalman Filter

Kei Yoshimura AORI, Univ Tokyo

Yoshimura, Miyoshi, Kanamitsu, 2013 Yoshimura, Miyoshi, Kanamitsu, 2014

Stable Water Isotopes and Hydrologic Cycle

• SWI have integrated records of phase changes during its transport.

LETTER

Terrestrial water fluxes dominated by transpiration

Scott Jasechko¹, Zachary D. Sharp¹, John J. Gibson^{2,3}, S. Jean Birks^{2,4}, Yi Yi^{2,3} & Peter J. Fawcett¹
 Transpiration represents 80~90 % of terrestrial ET.

Isotopes in GCM/RCM

 Incorporate water isotopes as passive tracers in GCMs/RCMs. Whenever water phase change takes place, isotopic water (HDO, H₂¹⁸O) behave differently to ordinary water (H₂O).

- Kick-off in 17-19 November 2008 in IAEA HQ; chaired by C. Sturm, K. Yoshimura & D. Noone.
- More isotopic AGCMs (at least 9) and 2 isotopic RCMs.
- Add nudging experiments to focus on only isotopic parameterizations and on more realistic reconstruction of isotopic variations.
- More focused on hydrologic cycle than climatology
- Endorsed by GHP/CEOP in 2008-2010

Forward Proxy Modeling of $\delta^{18}\text{O}$ in cellulose

Measured values are composite of Bale 2010 and recent Stott and Rincon data. Model is based on Roden Model with met./iso inputs from Yoshimura 20c Rear

Sea water δ^{18} O derived from coral and model (temperature effect removed by Sr/Ca)

 δ^{18} Osw records are well reproduced both seasonally and inter-annually in various sites. Courtesy of K. Kojima

Way forward: Isotope Reanalysis

Toward "Real" Isotope Reanalysis: Data Assimilation of Isotope

IsoGSM(Y08), TPW- $\delta^{18}O[\%]$, 18Z30JAN2004

-90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20

Targets:

- ✓ First global 4D analyses for vapor isotopes.
- ✓ Accurate Precip. isotopes in fine resolution.
- ✓ Possibility of improvement on other dynamical fields.

SCIAMACHY/Envisat: surface vapor HDO (Frankenberg et al., 2009, Science)

TES/Aura: mid troposphere vapor HDO (Worden et al., 2007, Nature)

Local Ensemble Transformed Kalman Filter (Miyoshi and Yamane, 2008)

 Not only the assimilated variables, but also other variables will be corrected to be a consistent field.

Idealized Experiments (OSSE)

observation location

• Assume one realization of AMIP runs as truth.

Grid with denser observations, $\delta^{18}O$

Grid with denser observations, T

1500 2000 2500 3000

3500

4000 4500

What about more realistic situation? Experiments with conventional measurement system

Global RMSD

σ=0.995	U [m/s]	V [m/s]	T [K]	q [g/kg]	Ps [hPa]	δ ¹⁸ Ο [‰]	δD [‰]
UVTq	1.33	1.30	0.40	0.42	1.04	0.98	7.23
UVTq+δD	1.27	1.25	0.40	0.41	0.99	0.93	6.94

σ=0.8835	U [m/s]	V [m/s]	T [K]	q [g/kg]	δ ¹⁸ Ο [‰]	δD [‰]
UVTq	1.49	1.39	0.55	0.69	1.41	10.77
UVTq+δD	1.42	1.34	0.53	0.68	1.35	10.35

Ultimate goal: Climate Reanalysis

- Much longer records than man-made observation
 - Oceanic sediment δ^{18} O (millions yBP)
 - Icesheet cores δ^{18} O• δ D (~800 kyBP)
 - Icecap cores δ¹⁸O
 δD (~20 kyBP)
 - Speleothem δ^{18} O (~2000 yBP)
 - Treering δ^{18} O (~1000 yBP)
 - Coral δ¹⁸O (~400 yBP)
- Bridging data and physics, consistently!

Proxy Sampling Site BC1000~AD2008

NOAA: http://www.ncdc.noaa.gov/paleo/

Summary

- Isotopic Data as input observation had positive impact on not only isotopic fields but also dynamical fields.
- (Selfish) suggestion for new observations:
 - Accuracy < Number of data
 - Temporal resolution < Longer data
 - Dense coverage < Sparse but equally distributed
- •There is potential for dynamical constraint by isotopic proxy data for the past, but lots of technical obstacles exist.

Paired isotopic proxy data since 8,000yBP

Liu et al., 2014, Nature Comm.

IsoGSM simulations

- Time-slice runs for MH and LH for 30 years, respectively.
- SST anomaly simulated by IPSL-CGCM was forced.

Result (Global RMSE for δ^{18} O, Wind, Temp, and Surface Pressure)

Air Temperature (K) at bottom

Zonal Wind (m/s) at bottom

Surface Pressure (Pa)

